Nanoscience, nanotechnology, and modeling

نویسندگان

  • James R. Chelikowsky
  • Mark A. Ratner
چکیده

nanotechnology are currently quite popular in both the scientific and the general press. These intermediate-length structures are intriguing because generally in the nanometer region, almost all physical and chemical properties of systems become size-dependent. For example, although the color of a piece of gold remains golden as it reduces from inches to millimeters to microns, the color changes substantially in the regime of nanometers. Similarly, the melting points of such particles change as they enter the nanoscale, where the surface energies become comparable to the bulk energies. Because properties at the nanoscale are size-dependent, nanoscale science and engineering offer an entirely new design motif for developing advanced materials and their applications. From the point of view of computation, nanostructures are of interest in two quite different directions. As a computational challenge, they are quite striking: ordinarily, we define nanostructures as having characteristic dimensions between one and 100 nm. Given that atoms have characteristic sizes between 0.1 and 0.3 nm, this suggests that nanoscale structures will contain between 103 and 1010 atoms. Modeling the behavior of such structures is then a substantial computational undertaking. The second reason that nanostructures are of interest to the computational community is that the tools with which we compute will almost certainly involve nanoscale structures. As Moore’s law is extended beyond the next 10 years, functional devices will certainly operate below 100 nm. Design rules for transport based on simple Ohmic behavior and digital off/on field-effect transistor function will then become dubious, and we will need entirely new design schemes to deal with the idiosyncrasies of nanoscale structures. Such components as molecular switches, nanotube connectors, crossbar arrays, magnetic nanodot memories, and electronic paper embody the challenge and promise of nanomaterials in computing. This issue of CiSE contains three articles that pinpoint particular important avenues in the modeling of nanostructures. All three point out the difficulty that scaling imposes as we move from the characteristic size of small molecules (containing a few atoms) to true nanostructures containing more than 105 atoms. Modeling methods thus require a judicious integration of high-accuracy quantum-mechanical treatments for small structures ranging from approximate quantum dynamics for medium-length-scale materials, to classical molecular electronics for large-scale materials, through a form of continuum mechanics for macroscopic structures. Be-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Molecular Workbench Software: An Innova- tive Dynamic Modeling Tool for Nanoscience Education

Nanoscience and nanotechnology are critically important in the 21 century (National Research Council, 2006; National Science and Technology Council, 2007). This is the field in which major sciences are joining, blending, and integrating (Battelle Memorial Institute & Foresight Nanotech Institute, 2007; Goodsell, 2004). The prospect of nanoscience and nanotechnology in tomorrow’s science and tec...

متن کامل

Computational nanomechanics and thermal transport in nanotubes and nanowires.

Representative results of computer simulation and/or modeling studies of the nanomechanical and thermal transport properties of an individual carbon nanotube, silicon nanowire, and silicon carbide nanowire systems have been reviewed and compared with available experimental observations. The investigated nanomechanical properties include different elastic moduli of carbon nanotubes, silicon nano...

متن کامل

Tunable optical antennas based on metallic nanoshells with nanoknobs.

We investigate optical properties of a new complex plasmonic nanostructure, which consists of a spherical metallic nanoshell and a small metallic nanoparticle ("nanoknob") situated on its surface. The plasmon resonance wavelength of the entire structure is guided by the geometrical and material properties of the nanoshell whereas the electromagnetic field of the incident light is localized and ...

متن کامل

Multiscale modeling of carbon nanotube reinforced polymer composites.

This article examines the effect of interfacial load transfer on the stress distribution in carbon nanotube/polymer composites through a stress analysis of the nanotube/matrix system. Both isostrain and isostress loading conditions are investigated. The nanotube is modeled by the molecular structural mechanics method at the atomistic level. The matrix is modeled by the finite element method, an...

متن کامل

Von Neumann, Self-Reproduction and the Constitution of Nanophenomena

As part of a larger study of the immediate antecedents of nanoscience and nanotechnology, I examine, in this paper, the role played by John von Neumann’s work on self-reproduction in the constitution of these fields (see especially von Neumann 1951, 1956 and 1966). Von Neumann’s proposals have always been characterized by an overall unified vision, in which, depending on the domain under consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computing in Science and Engineering

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2001